Testing for Targeted Therapy of Non-Small-Cell Lung Cancer

<table>
<thead>
<tr>
<th>Policy Number</th>
<th>Policy Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHS-G2054</td>
<td>Liquid Biopsy</td>
</tr>
<tr>
<td>AHS-M2066</td>
<td>Genetic Cancer Susceptibility Using Next Generation Sequencing</td>
</tr>
<tr>
<td>AHS-M2109</td>
<td>Molecular Panel Testing of Cancers To Identify Targeted Therapy</td>
</tr>
<tr>
<td>AHS-M2145</td>
<td>General Genetic Testing, Germline Disorders</td>
</tr>
<tr>
<td>AHS-M2146</td>
<td>General Genetic Testing, Somatic Disorders</td>
</tr>
</tbody>
</table>

I. Policy Description

Non-small cell lung cancer (NSCLC) is a heterogeneous group of cancers encompassing any type of epithelial lung cancer other than small cell lung cancer (SCLC) which arise from the epithelial cells of the lung and include squamous cell carcinoma, large cell carcinoma, adenocarcinoma (Thomas, 2020). Recently oncogenesis in NSCLC has been associated with mutations in the epidermal growth factor receptor (EGFR) or rearrangements of the anaplastic lymphoma kinase (ALK) gene or ROS1 gene (Sequist & Neal, 2020).

For guidance concerning the use of circulating tumor cells (i.e. liquid biopsy) in NSCLC, please refer to policy G2054 Liquid Biopsy.

II. Related Policies

III. Indications and/or Limitations of Coverage

Application of coverage criteria is dependent upon an individual’s benefit coverage at the time of the request. Medical Policy Statements do not ensure an authorization or payment of services. Please refer to the plan contract (often referred to as the Evidence of Coverage) for the service(s) referenced in the Medical Policy Statement. If there is a conflict between the Medical Policy Statement and the...
plan contract (i.e., Evidence of Coverage), then the plan contract (i.e., Evidence of Coverage) will be the controlling document used to make the determination.

Application of coverage criteria is dependent upon an individual’s benefit coverage at the time of the request. If there is a conflict between this Policy and any relevant, applicable government policy [e.g. National Coverage Determinations (NCDs) for Medicare] for a particular member, then the government policy will be used to make the determination. For the most up-to-date Medicare policies and coverage, please visit their search website [http://www.cms.gov/medicare-coverage-database/overview-and-quick-search.aspx?from2=search1.asp] or the manual website

1. Testing for *EGFR* and *BRAF* mutations, *ALK* and *ROS1* rearrangements **MEETS COVERAGE CRITERIA** before any systemic therapy initiation in patients with NonSmall Cell Lung Cancer (NSCLC).

2. Multiplexed genetic sequencing panels testing including *BRAF, MET, RET, ERBB2(HER2), KRAS** MEETS COVERAGE CRITERIA** to identify other treatment options beyond *EGFR, ALK*, and *ROS1* in patients with NSCLC.

3. Analysis of PD-L1 expression by immunohistochemistry **MEETS COVERAGE CRITERIA** to direct therapy in all patients with NSCLC.

4. Testing for *NTRK* gene fusion **MEETS COVERAGE CRITERIA** for individuals with NSCLC before first-line or subsequent targeted therapy

5. Tumor mutational burden (TMB) testing **MEETS COVERAGE CRITERIA** for individuals with NSCLC before initiating targeted therapy.

6. Microsatellite instability analysis **MEETS COVERAGE CRITERIA** for individuals with unresectable or metastatic Non-Small Cell Lung Cancer that has progressed after prior treatment and for which there is no alternative treatment AND for whom pembrolizumab is being considered for therapy.

7. *KRAS* molecular testing **DOES NOT MEET COVERAGE CRITERIA** as a routine standalone assay and as a sole determinant of targeted therapy.

 The following does not meet coverage criteria due to a lack of available published scientific literature confirming that the test(s) is/are required and beneficial for the diagnosis and treatment of a patient’s illness.

8. Analysis of PD-L1 expression by immunohistochemistry in all other situations **DOES NOT MEET COVERAGE CRITERIA**.

9. Analysis for genetic alterations in the genes not mentioned above for targeted therapy in patients with NSCLC **DOES NOT MEET COVERAGE CRITERIA**.
IV. Scientific Background

Primary lung cancer remains one of the most common malignancies. In the United States, approximately 230,000 individuals are diagnosed and more than 135,000 deaths occur annually. Approximately 95% of lung cancers are either non-small cell or small cell, and 80%-85% are non-small cell lung cancers (NSCLC) (ACS, 2019; Midthun, 2020).

Specific molecular treatments for patients based on certain genetic mutations have been developed. Currently, EGFR, ALK, ROS1, BRAF, and NTRK-positive cases of NSCLC have FDA-approved targeted therapies (i.e. specific treatments for specific mutations), whereas HER2-, MET-, and RET-positive cases are treated with off-label therapies. Therapies for other mutations such as RAS, PTEN, AKT1, and PIK3CA mutations are currently in development. Still other genetic biomarkers, such as PD-L1 expression and microsatellite instability (MSI) testing may contribute to the management of NSCLC cases (Sequist & Neal, 2017, 2019, 2020).

EGFR tyrosine kinase mutations are observed in approximately 15% of NSCLC adenocarcinoma cases in the United States and occur more frequently in nonsmokers. The presence of an EGFR mutation usually confers a better prognosis and may be treated by EGFR tyrosine kinase inhibitors (TKIs) such as erlotinib (Sequist & Neal, 2019, 2020).

ALK tyrosine kinase translocations are present in approximately 4% of NSCLC adenocarcinoma cases in the United States and occur more frequently in nonsmokers and younger patients. In advanced stage NSCLC, the presence of an ALK translocation may be treated by ALK TKIs such as crizotinib (Sequist & Neal, 2020).

ROS1 is a receptor tyrosine kinase that acts as a driver oncogene in 1 to 2% of NSCLC cases by a translocation between ROS1 and other genes such as CD74. ROS1 translocations are usually associated with younger patients and individuals who have never smoked tobacco. Since the ALK and ROS tyrosine kinases are significantly homologous, the ROS1 tyrosine kinase is treatable by ALK TKIs such as crizotinib (Sequist & Neal, 2020).

HER2 (ERBB2) is an EGFR family receptor tyrosine kinase. Mutations in HER2 have been detected in approximately 1 to 3% of NSCLC tumors. These mutations are most frequent in exon 20, resulting primarily in adenocarcinomas. This mutation is more prevalent among individuals who have never smoked tobacco and women (Sequist & Neal, 2020).

BRAF is a downstream signaling mediator of KRAS that activates the mitogen-activated protein kinase (MAPK) pathway. Activating BRAF mutations have been observed in 1 to 3% of NSCLC cases and are usually associated with smokers. BRAF inhibition with oral small-molecule TKIs has been used to treat this version of NSCLC (Sequist & Neal, 2020).

MET is a tyrosine kinase receptor for hepatocyte growth factor (HGF). MET mutations include MET exon 14 skipping, MET gene amplification, and MET and EGFR co-mutations. Crizotinib, an ALK/ROS inhibitor, has been used to treat MET-positive cases of NSCLC, but MET-specific therapies are under investigation (Sequist & Neal, 2020).
The RET gene encodes a cell surface tyrosine kinase receptor that may be translocated in adenocarcinomas. These mutations occur more frequently in younger patients and in individuals who have never smoked tobacco. Off-label RET inhibitors, such as alectinib, have been used to treat RET-positive cases of NSCLC (Sequist & Neal, 2020).

RAS mutations, in either KRAS or NRAS are associated with NSCLC. Activating KRAS mutations are observed in approximately 20 to 25% of lung adenocarcinomas in the United States and are generally associated with smoking. The presence of a KRAS mutation has a limited effect on overall survival in patients with early-stage NSCLC. NRAS is homologous to KRAS and associated with smoking as well; however, NRAS mutations comprise only 1% of NSCLC cases. The clinical significance of NRAS mutations is unclear, and no effective targeted therapies exist at this time (Sequist & Neal, 2020).

PIK3CA, AKT1, and PTEN are three genes involved in the same pathway. PIK3CA encodes the catalytic subunit of phosphatidylinositol 3-kinase (PI3K), AKT1 acts immediately downstream of PI3K, and phosphatase and tensin homolog (PTEN) inhibits AKT by dephosphorylation. Oncogenic alterations in this pathway include gain-of-function mutations in PIK3CA and AKT1, and loss of PTEN function. PIK3CA mutations may also cause resistance to EGFR TKIs in EGFR-mutated NSCLC. Small-molecule inhibitors of PI3K and AKT are being developed, but clinical efficacy of these agents against specific molecular alterations is unknown (Sequist & Neal, 2020).

Other genetic biomarkers include PD-L1 assessment and microsatellite instability (MSI) testing. Programmed death-1 ligand (PD-L1) expression testing via immunohistochemistry (IHC) is used to guide therapy for patients with NSCLC. Tumor cells present PD-L1 to T-cells to inhibit the immune response by downregulating cytokine production and T-cell proliferation, thereby allowing these tumor cells to evade immune system activity. However, monoclonal antibody therapy (immune therapy) has been developed to inhibit this pathway and overcome this mechanism of immune system evasion (Teixidó, Vilariño, Reyes, & Reguarr, 2018). Microsatellites are short tandem repeat sequences located throughout the genome. However, these sequences are subject to instability caused by faulty mismatch repair genes. This has historically been reported in other cancers, such as Lynch syndrome, and has been reported in NSCLC. MSI testing may be used to evaluate NSCLC cases (Fong, Zimmerman, & Smith, 1995).

Precision oncology is now the evidence-based standard of care for the management of many advanced NSCLCs. Expert consensus guidelines have defined minimum requirements for routine testing and identification of EGFR and ALK mutations in advanced lung adenocarcinomas. Targeted use of TKIs based on certain genetic mutations has consistently led to more favorable outcomes compared with traditional cytotoxic agents (Shea, Costa, & Rangachari, 2016). The concept of targeted testing has been approved by the FDA, as package inserts for drugs such as erlotinib specify use for EGFR mutations and other drugs such as pembrolizumab have gained approval for specific types of tumors (in this case, high-MSI tumors) (Boyiadzis et al., 2018; FDA, 2004; Lemery, Keegan, & Pazdur, 2017). Many tests are available for identification for relevant mutations, including larger genetic panels. Foundation One’s 324-gene panel and Oncomine’s 23-gene panel are both FDA-approved as companion diagnostics for non-small cell lung cancer targeted therapies (FDA, 2020b). Validity and Utility

Lin et al evaluated the association between EGFR and EGFR-TKI efficacy in stage IV NSCLC patients. 94 patients were assessed. The authors calculated a 74.5% objective response rate and a 97.9% disease control rate for EGFR-TKI treatment. The authors concluded that EGFR-TKI therapy resulted in survival...
benefits for *EGFR*-mutant patients regardless of “gender, smoking history, pathologic type, type of *EGFR* mutations, brain metastasis and timing of targeted therapy” (Lin et al., 2017).

Li et al examined the effect of number of *EGFR* mutations on the efficacy of *EGFR* TKIs. 201 patients with *EGFR* mutations were evaluated, and these patients were quantitatively separated into “low” and “high” groups based on “amplification refractory mutation system (ARMS) method optimized with competitive blockers and specific mutation quantitation (ARMS+)”. The cutoff value was determined by a receiving operating characteristic analysis in a training group and further validated in another group. The investigators found the median progression-free survival (PFS) to be 15 months in the high group compared to the 2 months in the low group, and similar results were found in the validation group. The authors concluded that the abundance of *EGFR* mutations was significantly associated with objective response to *EGFR* TKIs. However, they also noted the abundance of *EGFR* T790M mutation may adversely affect PFS rather than objective response rate (Li et al., 2017).

Wang et al investigated the effect of *ALK* rearrangements on NSCLC patients. 15 studies including 4981 patients were reviewed. The study found that *ALK* positive (*ALK*+) patients faced better prognoses (hazard ratio 0.81 of *ALK* negative patients) except in the non-smoking population (hazard ratio 1.65). *ALK*+ patients also experienced a significantly higher objective response rate in pemetrexed-based chemotherapy, but not with *EGFR*-TKI treatment (Wang et al., 2017).

Gainor et performed a study evaluating the efficacy of PD-L1 blockades on *EGFR* and *ALK* positive patients. 58 patients were evaluated, and 28 had an *EGFR* or *ALK* mutation whereas 30 were wildtype. The investigators found only one of the 28 patients (3.6%) with either mutation had an objective response whereas seven of the 30 (23.3%) wild-type patients had an objective response (Gainor et al., 2016).

Planchard et al evaluated the efficacy of the FDA-approved combination of da*BRAF*enib plus trametinib on previously treated *BRAF*-mutant metastatic NSCLC. 57 patients were enrolled, and 36 of these patients achieved an overall response. However, serious adverse events were reported in 32 of these patients. The authors concluded that this combination may represent a robust therapy with a management safety profile in *BRAF*-positive NSCLC patients (Planchard et al., 2016).

A 2019 comprehensive study by Singal and associates examined the electronic health records (EHR) of 4064 individuals with NSCLC from 275 different oncology practices to explore “associations between tumor genomics and patient characteristics with clinical outcomes…” They note that 21.4% of these individuals had a mutation in *EGFR*, *ALK*, or *ROS1*, and that patients with driver mutations who had targeted therapies had significantly improved overall survival times than individuals who did not have targeted therapies (median of 18.6 versus 11.4 months, respectively); moreover, a tumor mutational burden (TMB) of 20 or higher was associated with improved overall survival for patients on PD-L1-targeted therapy than those patients with a TMB less than 20. The authors concluded that they replicated similar associations from previous research “between clinical and genomic characteristics, between driver mutations and response to targeted therapy, and between TMB and response to immunotherapy (Singal et al., 2019).”

Siena et al reported integrated data from 3 clinical trials focusing on entrectinib. Patients had either *ROS1*-driven or *NTRK*-driven cases of NSCLC. Out of 53 patients with *ROS1* mutations, approximately 80% responded to entrectinib. Out of 54 patients with *NTRK* mutations, approximately 60% responded. The authors considered entrectinib to be “tolerable with a manageable safety profile”, and concluded that “entrectinib induced clinically meaningful durable responses in [patients] with *ROS1*+ NSCLC or *NTRK*+ solid tumors with or without CNS disease” (Siena et al., 2019).
Alborelli et al investigated the predictive power of tumor mutational burden (TMB) for patients treated with immune checkpoint inhibitors (ICIs). 76 NSCLC patients treated with ICIs were included and TMB was evaluated with the “Oncomine™ Tumor Mutational Load” sequencing assay. Patients were separated into cohorts of “durable clinical benefit” (DCB) or “no durable benefit” (NDB). TMB was found to be higher in the DCB cohort (median TMB of 8.5 mutations / Mb compared to 6 mutations / Mb in NDB). 64% of patients in the highest tertile of TMB were responders, compared to 33% and 29% in the middle and lowest tertiles respectively. TMB-high patients were also found to have higher progression free survival and overall survival. Overall, the authors concluded that the TML panel was an effective tool to stratify patients for ICI treatment and suggested that “a combination of biomarkers might maximize the predictive precision for patient stratification”. Further, the authors remarked that their data “supports TMB evaluation through targeted NGS in NSCLC patient samples as a tool to predict response to ICI therapy” (Alborelli et al., 2020).

Volckmar et al assessed the “feasibility and clinical utility of comprehensive, NGS-based genetic profiling for routine workup of advanced NSCLC”. The authors based their study on the first 3000 patients seen in their facility. Of the patients tested, the authors identified 807 patients eligible for “currently approved, EGFR-/BRAF-/ALK- and ROS1-directed therapies”, while 218 additional cases with MET, ERBB2 (HER2) and RET alterations could “potentially benefit from experimental targeted compounds”. Other co-mutations such as TP53 and STK11 were also frequently identified, which may be potentially useful predictive and prognostic tools. The authors also noted logistical successes, such as reliability, low dropout rate, fast turnaround times, and minimal tissue requirements. Overall, the authors concluded that this diagnostic approach demonstrated “practicability in order to support individualized decisions in routine patient care, enrollment in molecularly stratified clinical trials, as well as translational research.” (Volckmar et al., 2019)

Signorovitch et al aimed to evaluate the “budget impact of increased use of CGP [comprehensive genomic profiling] using a 324-gene panel (FoundationOne) vs non-CGP (represented by a mix of conventional molecular diagnostic testing and smaller NGS hotspot panels) and the number needed to test with CGP to gain 1 life year”. The authors developed a decision analytic model to assess the financial impact of increased CGP in advanced non-small cell lung cancer (NSCLC). The study included 2 million covered lives, of which 532 had advanced NSCLC. 266 of these patients underwent molecular diagnostic testing. An increased in CGP among those tested (from 2%-10%) was associated with a $0.02 per member per month budget impact, of which $0.013 “was attributable to costs of prolonged drug treatment and survival and $0.005 to testing cost”. Overall, the addition of 1 life year was met with 12 patients tested. The authors concluded that a 2%-10% increase in CGP use was associated with a “modest budget impact, most of which was attributed to increased use of more effective treatment and prolonged survival” (Signorovitch, Zhou, Ryan, Anhorn, & Chawla, 2019).

V. Guidelines and Recommendations

National Comprehensive Cancer Network (NCCN, 2020)

In the version 3.2020 update of the NCCN guidelines for NSCLC released on 2/11/2020, they state, “Numerous gene alterations have been identified that impact therapy selection. Testing of lung cancer specimens for these alterations is important for identification of potentially efficacious targeted therapies, as well as avoidance of therapies unlikely to provide clinical benefit (NCCN, 2020).” The NCCN states, “Appropriate possible testing methodologies are indicated below for each analyte separately; however, several methodologies are generally considerations for use:
• Next-generation sequencing (NGS) is used in clinical laboratories. Not all types of alterations are detected by individual NGS assays and it is important to be familiar with the types of alterations identifiable in individual assays or combination(s) of assays.

• It is recommended at this time that when feasible, testing be performed via a broad, panel-based approach, most typically performed by next generation sequencing (NGS). For patients who, in broad panel testing don’t have identifiable driver oncogenes (especially in never smokers), consider RNA-based NGS if not already performed, to maximize detection of fusion events.

• Real-time polymerase chain reaction (PCR) can be used in a highly targeted fashion (specific mutations targeted). When this technology is deployed, only those specific alterations that are targeted by the assay are assessed.

• Sanger sequencing requires the greatest degree of tumor enrichment. Unmodified Sanger sequencing is not appropriate for detection of mutations in tumor samples with less than 25% to 30% tumor after enrichment and is not appropriate for assays in which identification of subclonal events (e.g., resistance mutations) is important. If Sanger sequencing is utilized, tumor enrichment methodologies are nearly always recommended.

• Other methodologies may be utilized, including multiplex approaches not listed above (i.e., SNaPshot, MassARRAY).

• Fluorescence in situ hybridization (FISH) analysis is utilized for many assays examining copy number, amplification, and structural alterations such as gene rearrangements.

• Immunohistochemistry (IHC) is specifically utilized for some specific analytes, and can be a useful surrogate or screening assay for others (NCCN, 2019, 2020).”

The NCCN states, “To minimize tissue use and potential wastage, the NCCN NSCLC Panel recommends that broad molecular profiling be done as part of biomarker testing using a validated test(s) that assesses a minimum of the following potential genetic variants: EGFR mutations, BRAF mutations, ALK fusions, and ROS1 fusions. Both FDA and laboratory-developed test platforms are available that address the need to evaluate these and other analytes. Broad molecular profiling is also recommended to identify rare driver mutations for which effective therapy may be available, such as NTRK gene fusions, high-level MET amplification, MET exon 14 skipping mutation, RET fusions, ERBB2 mutations, and TMB (NCCN, 2019, 2020).”

The NCCN states that “targeted therapy is recommended for patients with metastatic NSCLC and positive test results for EGFR, ALK, ROS1, BRAF, and NTRK variants” (NCCN, 2020).

EGFR mutations

EGFR mutations are most often assessed using rt-PCR, Sanger sequencing, and NGS. EGFR mutation status is important for determining use of tyrosine kinase inhibitor (TKI) therapies. EGFR mutations include, but are not limited to, exon 19 deletions, p.L858R point mutation, p.L861Q, p.G719X, p.S768I0, exon 20 insertion variants, and p.T790M. As a category 1 recommendation, EGFR mutation testing is recommended for advanced or metastatic disease, including adenocarcinoma, large cell, and
NSCLC NOS. As a category 2A recommendation, it is recommended to consider it for individuals with squamous cell carcinoma who have never been smokers, small biopsy specimens, or mixed histology (NCCN, 2020).

ALK gene rearrangements

ALK gene rearrangements are most often assessed using FISH, but IHC can also be effective. The NCCN states that NGS can detect *ALK* fusions, but PCR is less likely to detect any ALF fusion with a novel partner(s). The most common fusion partner for *ALK* is EML4; however, many other partners have been isolated and identified. Similar to *EGFR*, *ALK* status is used in determining whether or not TKI therapies are appropriate. As a category 1 recommendation, *ALK* testing is recommended for advanced or metastatic disease, including adenocarcinoma, large cell, and NSCLC NOS. As a category 2A recommendation, it is recommended to consider it for individuals with squamous cell carcinoma who have never been smokers, small biopsy specimens, or mixed histology (NCCN, 2020).

ROS1 rearrangements

In NSCLC, *ROS1* rearrangements can result in inappropriate *ROS1* kinase signaling. Similar to *ALK*, FISH break-apart testing is often used, but this methodology “may under-detect the FIG-ROS1 variant” (NCCN, 2020). IHC requires confirmatory testing because it has a low specificity for *ROS1*. PCR, if used, can be unlikely to detect novel fusion partners. *ROS1* status is important for responsiveness to oral *ROS1* TKIs. As category 2A recommendations, *ROS1* testing should be performed for advanced or metastatic disease, including adenocarcinoma, large cell, and NSCLC NOS; it should be considered in individuals with squamous cell carcinoma with small biopsy specimens or mixed histology (NCCN, 2020).

Entrectinib was added as a preferred treatment option for *ROS1* rearrangements in advanced or metastatic NSCLC in v7.2019 of the NCCN’s NSCLC guidelines (NCCN, 2020).

BRAF point mutations

Sequencing methods, especially NGS and Sanger, and rtPCR are most often used for detecting *BRAF* point mutations. *BRAF* V600 mutations are associated with responsiveness to certain combination therapies. Many *BRAF* mutations have been identified in NSCLC, but the impact of these mutations is not well-understood as of date. As category 2A recommendations, *BRAF* testing should be performed for advanced or metastatic disease, including adenocarcinoma, large cell, and NSCLC NOS; it should be considered in individuals with squamous cell carcinoma with small biopsy specimens or mixed histology (NCCN, 2020). *KRAS* point mutations

Like *BRAF*, sequencing methods are used in the identification of point mutations within the *KRAS* gene. For NSCLC, the most common *KRAS* mutations are located in codon 12 even though other point mutations may occur elsewhere. *KRAS* mutations have been linked as a prognostic indicator of poor survival and can impact *EGFR* TKI therapy. The NCCN states, “*EGFR*, *KRAS*, *ROS1*, and *ALK* genetic alterations do not usually overlap; thus, testing for *KRAS* mutations may identify patients who will not benefit from further molecular testing (NCCN, 2020).” As of publication date, no *KRAS*-specific therapies are recommended, although *KRAS* mutations are considered prognostic.
PD-L1

PD-L1 is expressed on tumor cells; its presence is used to determine possible pembrolizumab therapy. The FDA has approved IHC use for assessing PD-L1. The FDA-approved companion diagnostic for PD-L1 guides utilization of pembrolizumab in patients with NSCLC and is based on the tumor proportion score. The NCCN does note that “the potential for multiple different assays for PD-L1 has raised concern among both pathologists and oncologists (NCCN, 2019, 2020).” As a category 1 recommendation, PD-L1 testing is recommended for all cases of advanced or metastatic disease, including adenocarcinoma, large cell, NSCLC NOS, and squamous cell carcinoma.

NTRK gene fusion

The NCCN has an NTRK gene fusion positive algorithm where larotrectinib is to be used as a first-line therapy if the gene fusion was discovered prior to first-line systemic therapy. If the NTRK gene fusion was discovered during a different first-line systemic therapy, then they recommend completing the planned systemic therapy, including maintenance therapy, and then follow this first-line therapy up with larotrectinib. As a category 2A recommendation, the NCCN recommends NTRK gene fusion testing to be included as part of molecular profiling for all forms of advanced or metastatic disease, including adenocarcinoma, large cell, NSCLC NOS, and squamous cell carcinoma. “The NCCN NSCLC Panel recommends larotrectinib and entrectinib (both are category 2A) as either first-line or subsequent therapy options for patients with NTRK gene fusion-positive metastatic NSCLC based on data and the FDA approvals. As of the v3 2020 update, both agents are considered “preferred” first-line therapies for patients with NTRK gene fusion-positive metastatic disease (NCCN, 2020).

Tumor Mutational Burden (TMB)

“TMB is considered to be an emerging biomarker that may be useful in selecting patients for nivolumab with or without ipilimumab; however, there is no consensus on how to measure TMB”. In 2019, the NCCN added tumor mutational burden (TMB) to the list of biomarkers to identify novel therapies and in the section concerning predictive biomarkers. The NCCN goes on to state, “Targeted agents are available for patients with NSCLC who have these other genetic alterations, although they are FDA approved for other indications... Thus, the NCCN Panel strongly advises broader molecular profiling to identify rare driver mutations to ensure that patients receive the most appropriate treatment; patients may be eligible for clinical trials for some of these targeted agents .”

Emerging biomarkers to identify novel therapies

The NCCN version 3.2020 also lists the following emerging biomarkers to identify novel therapies for patients with metastatic NSCLC.

<table>
<thead>
<tr>
<th>Genetic Alteration</th>
<th>Available Targeted Agents for Genetic Alteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-level MET amplification or MET exon 14 skipping mutation</td>
<td>Crizotinib</td>
</tr>
<tr>
<td>RET rearrangements</td>
<td>Cabozantinib, Vandetanib</td>
</tr>
<tr>
<td>ERBB2 (HER2) mutations</td>
<td>Ado-trastuzumab emtansine</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Tumor mutational burden (TMB)</td>
<td>Nivolumab + ipilimumab</td>
</tr>
<tr>
<td></td>
<td>Nivolumab</td>
</tr>
</tbody>
</table>

College of American Pathologists (CAP), the International Association for the Study of Lung Cancer (IASLC), and the Association for Molecular Pathology (Lindeman et al., 2018)

The CAP/IASLC/AMP joint guidelines indicate that “EGFR molecular testing should be used to select patients for EGFR-targeted tyrosine kinase inhibitor therapy (Evidence Grade: A)” (Lindeman et al, 2013). Testing is recommended for adenocarcinomas and mixed lung cancers “regardless of histologic grade.” However, in the setting of fully excised lung cancer specimens, EGFR testing is not recommended for lung cancer without any adenocarcinoma component (Evidence Grade: A). In the setting of more limited lung cancer specimens where an adenocarcinoma component cannot be completely excluded, EGFR testing is recommended “in cases showing squamous or small cell histology but clinical criteria (e.g., young age, lack of smoking history) may be useful in selecting a
subset of these samples for testing” (Evidence Grade: A). The 2018 CAP guidelines (Lindeman et al., 2018) reaffirmed the 2013 guideline recommendations of universal testing of lung cancer patients with advanced-stage cancers with an adenocarcinoma component, using molecular diagnosis for activating “hot-spot” mutations in EGFR exons 18 to 21 with at least 1% prevalence (ie, codons 709 and 719, exon 19 deletion 768, and exon 20 insertions 790, 858, and 861).

CAP also added the recommendation that: “In lung adenocarcinoma patients who harbor sensitizing EGFR mutations and have progressed after treatment with an EGFR-targeted tyrosine kinase inhibitor, physicians must use EGFR T790M mutational testing when selecting patients for third-generation EGFR-targeted therapy. Laboratories testing for EGFR T790M mutation in patients with secondary clinical resistance to EGFR targeted kinase inhibitors should deploy assays capable of detecting EGFR T790M mutations in as little as 5% of viable cells. (Lindeman et al., 2018)

The CAP recommendations were updated to include “3 categories into which genes should be placed. One set of genes must be offered by all laboratories that test lung cancers, as an absolute minimum: EGFR, ALK, and ROS1. A second group of genes should be included in any expanded panel that is offered for lung cancer patients: BRAF, MET, RET, ERBB2 (HER2), and KRAS, if adequate material is available. All other genes are considered investigational at the time of publication.” They elaborate to recommend: “In this context, institutions providing care for lung cancer patients have a choice: (1) offer a comprehensive cancer panel that includes all of the genes in the first 2 categories (EGFR, ALK, ROS1, BRAF, MET, RET, ERBB2 [HER2], KRAS, RET) for all appropriate patients, or (2) offer targeted testing for the genes in the must-test category (EGFR, ALK, ROS1) for all appropriate patients and offer as a second test an expanded panel containing the second-category genes (BRAF, MET, ERBB2 [HER2], and RET) for patients who are suitable candidates for clinical trials, possibly after performing a single-gene KRAS test to exclude patients with KRAS-mutant cancers from expanded panel testing (Lindeman et al., 2018). However, the CAP states that “KRAS molecular testing is not indicated as a routine standalone assay as a sole determinant of targeted therapy. It is appropriate to include KRAS as part of larger testing panels performed either initially or when routine EGFR, ALK, and ROS1 testing are negative” and that “RET, MET, KRAS, and ERBB (HER2) molecular testing is not indicated as a routine stand-alone assay outside the context of a clinical trial. It is appropriate to include RET, MET, KRAS, and ERBB (HER2) as part of larger testing panels performed either initially or when routine EGFR, ALK, and ROS1 testing are negative”.

The guidelines indicate that “ALK molecular testing should be used to select patients for ALK-targeted TKI therapy (Evidence Grade: B)” (Lindeman et al., 2013). Testing is recommended for adenocarcinomas and mixed lung cancers “regardless of histologic grade.” However, in the setting of fully excised lung cancer specimens, ALK testing is not recommended for lung cancer without any adenocarcinoma component (Evidence Grade: A). In the setting of more limited lung cancer specimens where an adenocarcinoma component cannot be completely excluded, ALK testing is recommended “in cases showing squamous or small cell histology but clinical criteria (eg, young age, lack of smoking history) may be useful in selecting a subset of these samples for testing” (Evidence Grade: A).

The CAP recommends that “Multiplexed genetic sequencing panels are preferred over multiple singlegene tests to identify other treatment options beyond EGFR, ALK, and ROS1.” They found that “NGS enables the simultaneous assessment of all 3 of the “must-test” genes in lung cancer—EGFR, ALK, ROS1—as well as each of the genes suggested for inclusion in larger panels—BRAF, RET, ERBB2
(HER2), KRAS, MET—and hundreds to thousands of other genes that may have potential roles in cancer development. In addition to small mutations, NGS assays are able to detect fusions/rearrangements and copy number changes in the targeted genes, if designed with these alterations in mind. Numerous studies have demonstrated the excellent sensitivity of NGS methods relative to single-gene targeted assays, particularly for single-nucleotide–substitution mutations. Next-generation sequencing methods typically require less input DNA and can accommodate smaller samples with lower concentrations of malignant cells, and, although typically slower than 1 single-gene assay, can often be performed more rapidly than sequential multiple single-gene assays. A reduced need for repeat biopsy is an additional benefit of panel testing (Lindeman et al., 2018).”

The 2018 CAP recommendations (Lindeman et al., 2018) state: “BRAF molecular testing is currently not indicated as a routine stand-alone assay outside the context of a clinical trial. It is appropriate to include BRAF as part of larger testing panels performed either initially or when routine EGFR, ALK, and ROS1 testing are negative.”

The 2018 CAP (Lindeman et al., 2018) recommendations state: “ROS1 testing must be performed on all lung adenocarcinoma patients, irrespective of clinical characteristics. ROS1 IHC may be used as a screening test in lung adenocarcinoma patients; however, positive ROS1 IHC results should be confirmed by a molecular or cytogenetic method.

In 2018 CAP (Lindeman et al., 2018) added the recommendation that “IHC is an equivalent alternative to FISH for ALK testing”, and that “although at the time of writing RT-PCR and NGS are not approved by the FDA in the United States as first-line methods for determining ALK status in selection of patients for ALK inhibitor therapy, these approaches have shown comparable performance with IHC when designed to detect the majority of fusions, and are standard practice in many other countries. These methods are highly specific for most fusions, and patients with positive results should be treated with an ALK inhibitor, although patients with negative results may benefit from a more sensitive method to exclude the possibility of a variant fusion. Similarly, amplicon-based NGS assays of DNA may likewise fail to detect all fusion variants, and therefore a capture-based DNA or RNA approach is preferred for NGS testing for ALK fusions. Current data are still too limited to develop a specific recommendation either for or against the use of NGS for ALK fusions as a sole determinant of ALK TKI therapy”.

Lastly the CAP found that “There is currently insufficient evidence to support a recommendation for or against routine testing for ALK mutational status for lung adenocarcinoma patients with sensitizing ALK mutations who have progressed after treatment with an ALK-targeted tyrosine kinase inhibitor (Lindeman et al., 2018)”.

American Society of Clinical Oncology (ASCO) (Hanna et al., 2020; Kalemkerian et al., 2018; Kris et al., 2017)

ASCO published a joint update on “Therapy for Stage IV Non–Small-Cell Lung Cancer Without Driver Alterations” with Ontario Health (OH). These guidelines are intended for patients without alterations in EGFR or ALK. These recommendations divide PD-L1 expression into three categories: negative (0%), low positive (1-49%) and high (>50%). Pembrolizumab, carboplatin, pemetrexed, atezolizumab, paclitaxel, and bevacizumab are all listed as potential treatments, some of which may stand alone and some which are to be used in combination (Hanna et al., 2020).
Another joint update with Cancer Care Ontario remarked that “Mutations in KRAS are not predictive for benefit from adjuvant chemotherapy” (Kris et al., 2017).

ASCO published an endorsement of the joint guidelines from the CAP/IASLC/AMP with some minor modifications. Relevant differences from the joint guidelines include:

- **BRAF** testing should be performed on all patients with advanced lung adenocarcinoma, irrespective of clinical characteristics.
- Physicians may use molecular biomarker testing in tumors with an adenocarcinoma component or nonsquamous non–small-cell histology (in addition to “any non–small-cell histology when clinical features indicate a higher probability of an oncogenic driver (e.g., young age [50 years]; light or absent tobacco exposure)” (Kalemkerian et al., 2018).

European Society for Medical Oncology (ESMO) (Novello et al., 2016; Planchard et al., 2018; Postmus et al., 2017)

According to ESMO, genetic alterations, which are key oncogenic events (driver mutations), have been identified in NSCLC, with two of these—EGFR mutations and the anaplastic lymphoma kinase (ALK) rearrangements—determining approved, selective pathway-directed systemic therapy. The ESMO guidelines do not specifically mention KRAS mutation testing. NGS is also mentioned for ALK, RET, ROS1, MET, HER2, and BRAF mutations (Novello et al., 2016).

ESMO remarks that the role of targeted agents in stages I–III NSCLC have not been evaluated properly. Therefore, they state that “there is no role for targeted agents in stage III NSCLC outside clinical trials” (Postmus et al., 2017).

ESMO published a guideline regarding metastatic NSCLC in 2018. In it, they note EGFR, ALK, ROS1, BRAF, and PD-L1 expression as usable biomarkers for “personalised medicine”. HER2, MET, NTRK, and RET are considered “evolving targets/biomarkers”. ESMO’s specific recommendations are listed below:

- “**EGFR** mutation status should be systematically analysed in advanced NSCC [non-small cell lung cancer] [level of evidence “I”, strength of recommendation “A”]. Test methodology should have adequate coverage of mutations in exons 18–21, including those associated with resistance to some therapies [III, B]. At a minimum, when resources or material are limited, the most common activating mutations (exon 19 deletion, exon 21 L858R point mutation) should be determined”

- “The availability of TKIs effective against T790M-mutant recurrent disease makes T790M testing on disease relapse mandatory [I, A]”

- “Testing for **ALK** rearrangement should be systematically carried out in advanced nonsquamous NSCLC [I, A]”
• “Testing for ROS1 rearrangement should be systematically carried out in advanced NSCLC [III, A]. Detection of the ROS1 translocation by FISH remains a standard; IHC may be used as a screening approach [IV, A]”

• “BRAF V600 mutation status should be systematically analysed in advanced NSCLC for the prescription of BRAF/MEK inhibitors”

• “Molecular EGFR and ALK testing are not recommended in patients with a confident diagnosis of SCC, except in unusual cases, e.g. never/former light smokers or long-time ex-smokers”

• “If available, multiplex platforms (NGS) for molecular testing are preferable [III, A].”

• “PD-L1 IHC should be systematically determined in advanced NSCLC [I, A]”

• “Testing is required for pembrolizumab therapy but may also be informative when nivolumab or atezolizumab are used” (Planchard et al., 2018). This guideline was updated in 2019.

National Institute for Health and Care Excellence (NICE, 2019)

NICE has published a guideline on the diagnosis and management of lung cancer. In it, NICE discusses several treatment regimens for various tumor subtypes, such as EGFR positive, ALK1 rearrangement positive, ROS1 positive, and PD-L1 percentage. However, NICE makes these recommendations for stage IIIIB cancer as well as stage IV non-squamous cancer (NICE, 2019).

VI. State and Federal Regulations, as applicable

The FDA has approved at least 11 tests for assessment of markers relevant to targeted therapy of NSCLC (FDA, 2020a). Additionally, many labs have developed specific tests that they must validate and perform in house. These laboratory-developed tests (LDTs) are regulated by the Centers for Medicare and Medicaid (CMS) as high-complexity tests under the Clinical Laboratory Improvement Amendments of 1988 (CLIA ’88). As an LDT, the U. S. Food and Drug Administration has not approved or cleared this test; however, FDA clearance or approval is not currently required for clinical use.

VII. Applicable CPT/HCPCS Procedure Codes

Billing applicable codes is not a guarantee of payment; see Section III for indications and limitations of coverage that may affect payment

<table>
<thead>
<tr>
<th>Code Number</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>81210</td>
<td>BRAF (B-Raf proto-oncogene, serine/threonine kinase) (eg, colon cancer, melanoma), gene analysis, V600 variant(s)</td>
</tr>
<tr>
<td>81235</td>
<td>EGFR (epidermal growth factor receptor) gene analysis, common variants (e.g., exon 19 LREA deletion, L858R, T790M, G719A, G719S, L861Q)</td>
</tr>
<tr>
<td>81275</td>
<td>KRAS (eg carcinoma) gene analysis, variants in codons 12 and 13</td>
</tr>
<tr>
<td>81276</td>
<td>KRAS (Kirsten rat sarcoma viral oncogene homolog) (eg, carcinoma) gene analysis; additional variant(s) (eg, codon 61, codon 146)</td>
</tr>
<tr>
<td>81301</td>
<td>Microsatellite instability analysis (eg, hereditary non-polyposis colorectal cancer, Lynch syndrome) of markers for mismatch repair deficiency (eg, BAT25, BAT26), includes comparison of neoplastic and normal tissue, if performed</td>
</tr>
<tr>
<td>81401</td>
<td>Molecular pathology proc, level 2</td>
</tr>
<tr>
<td>81404</td>
<td>Molecular pathology proc, level 5</td>
</tr>
<tr>
<td>88271</td>
<td>Molecular cytogenetics; DNA probe, each (eg, FISH)</td>
</tr>
<tr>
<td>88272</td>
<td>Molecular cytogenetics; chromosomal in situ hybridization, analyze 3-5 cells (eg, for derivatives and markers)</td>
</tr>
<tr>
<td>88273</td>
<td>Molecular cytogenetics; chromosomal in situ hybridization, analyze 10-30 cells (eg, for microdeletions)</td>
</tr>
<tr>
<td>Procedure Code</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>88342</td>
<td>Immunohistochemistry or immunocytochemistry, per specimen; each multiplex antibody stain procedure</td>
</tr>
<tr>
<td>88360</td>
<td>Morphometric analysis, tumor immunohistochemistry (eg, Her-2/neu, estrogen receptor/progesterone receptor), quantitative or semiquantitative, per specimen, each single antibody stain procedure; manual</td>
</tr>
<tr>
<td>88361</td>
<td>Morphometric analysis, tumor immunohistochemistry (eg, Her-2/neu, estrogen receptor/progesterone receptor), quantitative or semiquantitative, per specimen, each single antibody stain procedure; using computer-assisted technology</td>
</tr>
</tbody>
</table>

Procedure codes appearing in Medical Policy documents are included only as a general reference tool for each policy. They may not be all-inclusive.

VIII. Evidence-based Scientific References

IX. Revision History

<table>
<thead>
<tr>
<th>Revision Date</th>
<th>Summary of Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-01-2021</td>
<td>Initial presentation</td>
</tr>
</tbody>
</table>